Sunday, February 5, 2012

Why Become a Chemcal Engineer??!!!

 1. What is chemical engineering?

Chemical engineering is all about change - chemical and biochemical engineers create and develop processes to make useful products from raw materials, in a cost effective and safe manner.

2. What does the work involve?

Chemical engineers are trained to apply fundamental engineering principles, maximise economic returns and reduce environmental impact. Chemical engineers need to work as part of a team and develop good communication skills. Strong problem solving and analytical skills are also a bonus.

World’s Best Chemical Engineering Universities

USA and Canada

  1. Massachusetts Institute of Technology
    MIT is located in Boston, USA. MIT graduates and faculty are noted for their technical acumen (72 affiliated Nobel Laureates, 47 National Medal of Science recipients, and 29 MacArthur Fellows) and entrepreneurial spirit. The Department of Chemical Engineering at MIT have the largest chemical engineering faculty in the United States covering chemical engineering broadly, and in great depth. You may find further information about Che MIT here. For undergraduates, they have B.Sc degree in Chemical Engineering dan Chemical-Biological Engineering. For graduate school, they have M.S. CEP degree (Master of Science in Chemical Engineering Practice), Ph.D. CEP, and also Ph.D.
  2. University of California – Berkeley
    UC Berkeley is located in Berkeley, a city on the east shore of San Francisco Bay in Northern California, in the United States. By the 1930s, Berkeley had established itself as a premier research university, and today counts sixty-one Nobel Laureates among its faculty, researchers and alumni.The College of Chemistry offers undergraduate degrees in chemistry, chemical biology, and chemical engineering, as well as double majors in chemical engineering and materials science and engineering, and in chemical engineering and nuclear engineering. A new option is a concentration in materials chemistry. The college offers doctoral programs in chemistry and chemical engineering, and a master’s program in chemical engineering, including a concentration in product development. You may find further information about chemical engineering at UC Berkeley here.
  3. University of Toronto
    The University of Toronto (U of T) is a public research university in the city of Toronto, Ontario, Canada. The university is consistently placed among the leading academic institutions of the world. Newsweek magazine places the university first in Canada, and 18th worldwide, 9th among public universities, and among the top 5 universities outside the United States. The University is also affiliated with 9 Nobel laureates (6 alumni), the most of any Canadian university. Chemical Engineering and Applied Chemistry at the University of Toronto is one of the oldest and largest departments of its kind in North America. It has a rich history dating back to John Dalton of Dalton’s Atomic Theory and a modern reputation based on its state-of-the-art research achievements. You may find more information about chemical engineering at University of Toronto here

Saturday, February 4, 2012

Polietilen

Ada berbagai macam polietilen berdasarkan beda massa jenis dan banyaknya cabang. Berbagai macam polietilen yaitu:
1.      Ultra high molecular weight polyethylene (UHMWPE)
2.      Ultra low molecular weight polyethylene (ULMWPE or PE-WAX)
3.      High molecular weight polyethylene (HMWPE)
4.      High density polyethylene (HDPE)
5.      High density cross-linked polyethylene (HDXLPE)
6.      Cross-linked polyethylene (PEX or XLPE)
7.      Medium density polyethylene (MDPE)
8.      Linear low density polyethylene (LLDPE)
9.      Low density polyethylene (LDPE)
10.  Very low density polyethylene (VLDPE)
Polietilen yang terpenting adalah HDPE, LDPE, dan LLDPE.

Etilena/Etena

·         Struktur Molekul
Etena atau etilen adalah senyawa alkena paling sederhana yang terdiri dari empat atom hidrogen dan dua atom karbon yang terhubungkan oleh suatu ikatan rangkap. Karena ikatan rangkap ini, etena disebut pula hidrokarbon tak jenuh atau olefin. Etena memiliki rumus kimia C2H4.
Pada suhu kamar, molekul etena tidak dapat berputar pada ikatan rangkapnya sehingga semua atom pembentuknya berada pada bidang yang sama. Sudut yang dibentuk oleh dua ikatan karbon-hidrogen pada molekul adalah 121,3°, sangat dekat dengan sudut 120° yang diperkirakan berdasarkan hibridisasi ideal sp2.
Berikut disajikan data sifat fisis dan kimia etena.

Tabel 1.Sifat Fisis dan Kimia Etena
No
Sifat-Sifat
Keterangan
1.
Rumus molekul
C2H4
2.
Berat molekul
28,05 g/mol
3.
Kenampakan
Gas tidak berwarna
4.
Klasifikasi (oleh Uni Eropa)
Sangat mudah terbakar
5.
NFPA 704
6.
Massa jenis
1,178 kg/m3 di 15 °C, fase gas
7.
Titik lebur
-169,2 °C (104,0 K, -272,6 °F)
8.
Titik didih
-103,7 °C (169,5 K, -154,7 °F)
9.
Flash point
-136 °C
10.
Auto ignition temperature
542,8 °C
11.
Kelarutan di air
3,5 mg/100 ml (17 °C)
12.
Kelarutan di etanol
4,22 mg/L
13.
Kelarutan di dietil eter
bagus
14.
Keasaman (pKa)
4

Etilen/etena adalah senyawa organik yang paling banyak dihasilkan di dunia. Setiap tahunnya, produksi etilen di seluruh dunia melebihi 100 miliar ton. Etena digunakan terutama sebagai senyawa antara pada produksi senyawa kimia lain seperti plastik. Etena juga dibentuk secara alami oleh tumbuhan dan berperan sebagai hormon. Ia diketahui terutama merangsang pematangan buah dan pembukaan kuncup bunga. Berikut adalah 4 produk petrokimia penting yang berasal dari etilen:
Keterangan (dari kiri atas, berputar searah jarum jam):
1.      EtilenĂ etilen dikloridaĂ vinil klorida
2.      EtilenĂ etilen oksidaĂ etilen glikol
3.      EtilenĂ etil benzeneĂ stiren
4.      EtilenĂ berbagai macam polietilen
Gambar 4. Empat Produk Kimia Penting yang Berasal Dari Etilen
·         Reaksi-reaksi utama pada etilen dan produk petrokimia yang berasal dari etilen.
1.      Polimerisasi
Polimerisasi terjadi dengan katalis  yang membentuk coordination complex. Katalis yang digunakan : Ziegler-Natta  Ă  reaksi antara a-TiCl3 dengan trietilalumunium menghasilkan lima coordinate titanium (III) complex yang tersusun oktahedral.
Reaksi pembentukan polietilen:
Mekanisme polimerisasi (ethylene):

Chemical Engineer Jobs Description

Chemical engineers work in the production of chemicals and many other products that require chemical processing. They use the theories and laws of chemistry to develop industrial chemical processes. They generally build on the findings of research chemists, who work with small amounts of materials in laboratories. Chemical engineers are concerned with the design, construction, operation, and marketing of equipment that can reproduce on a large scale the processes or products developed by chemists. Chemical engineers work with industrial chemical processes to help produce a large variety of goods. They are often assisted by chemical technicians.

What Is Chemical Engineering? What Do Chemical Engineers Do?

What Is Chemical Engineering?
Chemical engineering basically is applied chemistry. It is the branch of engineering concerned with the design, construction, and operation of machines and plants that perform chemical reactions to solve practical problems or make useful products.
Like all engineers, chemical engineers use math, physics, and economics to solve technical problems. The difference between chemical engineers and other types of engineers is that they apply a knowledge of chemistry in addition to other engineering disciplines. Chemical engineers sometimes are called 'universal engineers' because their scientific and technical mastery is so broad.
What Do Chemical Engineers Do?
Some chemical engineers make designs and invent new processes. Some construct instruments and facilities. Some plan and operate facilities. Chemical engineers have helped develop atomic science, polymers, paper, dyes, drugs, plastics, fertilizers, foods, petrochemicals... pretty much everything. They devise ways to make products from raw materials and ways to convert one material into another useful form. Chemical engineers can make processes more cost effective or more environmentally friendly or more efficient. As you can see, a chemical engineer can find a niche in any scientific or engineering field.
SUMBER:

Biochar Stove (ANILA STOVE and LUSIA STOVE)

ANILA STOVE

Biochar Stove (EVERYTHING NICE STOVE and AVAN STOVE)

EVERYTHING NICE STOVE

AVAN STOVE

Easy/semi automatic  feeding untuk daerah pyrolisis dengan menggunakan 2 sumber udara: primary gas di bagian inlet fuel dan secondary gas di bagian atas pyrolisis chamber yang dapat diatur debitnya agar menghasilkan efisiensi energi yang tinggi, CO2 rendah dan biochar.

Biochar Stove (TLUD STOVE)

BIOCHAR

“One of the most exciting strategies for restoring carbon to depleted soils, and sequestering significant amounts of CO2 for 1000 years or more, is the use of biochar
(Al Gore)


Coal to Liquid Technology Options

Experience from many different types of coal to liquid fuel conversion techniques exists, while only some have been commercialized and proven feasible by industry. CTL-technology is an old concept that has to be fused with modern processes and machinery to be able to fulfil the economic and environmental constraints of today.  Existing technological infrastructure from conventional crude oil processing and gas liquefaction can provide synergistic effects reducing costs and necessary research. 
Research on synthetic fuels from non-coal feedstock exists in several places, where coal is too expensive or impractical to acquire for example. In theory, FT-synthesis can be used to create liquid fuels from very unconventional feedstock as long as hydrogen and carbon are available. For instance, carbon dioxide, carbon monoxide and other combustion exhaust have been used as feedstock in patent applications.

Coal to Liquid (CTL)

CTL is an old technique, developed at the beginning of the 20th century and has recently attracted attention once more. Historically, it helped to fuel the German military during  two world wars. CTL provided 92% of Germany’s air fuel and over 50% of their petroleum supply in the 1940s. South Africa developed CTL-technology in the 1950s during an oil blockade and CTL now plays  a vital part in South Africa's national economy, providing over 30% of their fuel demand.  
The best known CTL-process is Fischer-Tropsch (FT) synthesis, named after the inventors Franz Fischer and Hans Tropsch from the Kaiser Wilhelm Institute in the 1920s. The FT-synthesis is the basis for ICL technology. Friedrich Bergius, also a German. chemist, invented direct coal liquefaction (DCL) as a way to convert lignite into synthetic oil in 1913. Karrick invented a low temperature carbonization process in the USA around the 1930s, as a way to produce smokeless fuel and liquids from oil shale.
CTL-technologies have steadily improved since the Second World War. Technical development has resulted in a variety of systems capable of handling a wide array of coal types. However, only a very small number of commercial enterprises based on generating liquid fuels from coal have been undertaken, most of them based on ICL-technology. The most successful is the South African company Sasol, originally created as a way to protect the country’s balance of payment against the increasing dependence on foreign oil . A new DCL plant has recently become operational in China, possibly marking the beginning of a new era.

Reaksi Epoksidasi

A.      Oksidasi alkena dengan asam peroksikarboksilat
Metode laboratorium yang paling umum untuk sintesis epoksida dari alkena adalah oksidasi dengan asam peroksikarboksilat (Brown et al., 2009). Epoksidasi biasanya terjadi melalui reaksi dengan suatu asam peroksi yang seringkali disiapkan secara in situ. Asam-asam peroksi ini merupakan hasil dari reaksi dari asam karboksilat atau suatu gugus asil yang lain dengan hidrogen peroksida bersama dengan katalis asam jika diperlukan (Gunstone, 1996). Telah diketahui bahwa urutan efektifitas katalis yaitu, asam sulfat, asam fosfat, asam nitrat, dan asam klorida (Dinda et al., 2008). Reaksi yang terjadi adalah sebagai berikut:

Epoksida

Epoksida adalah senyawa eter siklik dengan cincin yang memiliki tiga anggota. Struktur dasar dari sebuah epoksida berisi sebuah atom oksigen yang diikat pada dua atom karbon berdekatan yang berasal dari hidrokarbon. Tegangan dari cincin dengan tiga anggota ini membuat senyawa epoksida menjadi lebih reaktif daripada eter asiklik.
Karakteristik dari senyawa epoksida adalah gugus oksiran yang terbentuk oleh oksidasi dari senyawa olefinik atau senyawa aromatik ikatan ganda.

Peluang Pekerjaan Lainnya Bagi Sarjana Teknik Kimia di Indonesia

Setelah seorang mahasiswa Teknik Kimia mendapat gelarnya, yaitu S. T, apa sih pekerjaan terfavorit mereka di dunia kerja? Tentunya bagi kalian yang masih mahasiswa Teknik Kimia, kalian akan melakukan rencana jangka panjang akan bekerja dimana, di bidang apa, di perusahaan apa, dan sebagai apa. Bagi kalian yang telah lulus atau baru lulus dari pendidikan Teknik Kimia, kalian juga tentunya pasti lebih memikirkan bidang pekerjaan yang akan kalian tekuni di dunia kerja nanti. Banyak pilihan yang terbuka untuk kita terjuni saat memasuki dunia kerja, namun apa sih yang terfavorit? Apa sih bidang pekerjaan dan perusahaan yang merupakan favorit lulusan Teknik Kimia saat ini? Anda dapat membaca paparkan trend pekerjaan terfavorit sebagai seorang sarjana Teknik Kimia di Indonesia dalam artikel Majari yang lalu, yaitu di: http://majarimagazine.com/2011/06/6-pekerjaan-terfavorit-seorang-sarjana-teknik-kimia/
Kemudian, muncul pertanyaan, jikalau saya tidak memiliki passion bekerja di Oil & Gas, FMCG, EPCC, Petrokimia, Chemical Industry, dan Consultant, lalu bagaimana peluang kerja di tempat lain? Berikut pemaparan dari informasi yang saya ketahui mengenai peluang pekerjaan lainnya bagi sarjana Teknik Kimia di Indonesia untuk memberikan informasi lebih mendetail bagi kesempatan kerja lulusan Teknik Kimia Indonesia.

6 Pekerjaan Terfavorit Seorang Sarjana Teknik Kimia di Indonesia

Setelah seorang mahasiswa Teknik Kimia mendapat gelarnya, yaitu S. T, apa sih pekerjaan terfavorit mereka di dunia kerja? Tentunya bagi kalian yang masih mahasiswa Teknik Kimia, kalian akan melakukan rencana jangka panjang akan bekerja dimana, di bidang apa, di perusahaan apa, dan sebagai apa. Bagi kalian yang telah lulus atau baru lulus dari pendidikan Teknik Kimia, kalian juga tentunya pasti lebih memikirkan bidang pekerjaan yang akan kalian tekuni di dunia kerja nanti. Banyak pilihan yang terbuka untuk kita terjuni saat memasuki dunia kerja, namun apa sih yang terfavorit? Apa sih bidang pekerjaan dan perusahaan yang merupakan favorit lulusan Teknik Kimia saat ini?


Berikut saya paparkan trend 6 pekerjaan terfavorit sebagai seorang sarjana Teknik Kimia di Indonesia saat ini:
1. Oil & Gas (Owner & Services)
Oil & Gas masih merupakan salah satu pekerjaan terfavorit bagi lulusan Teknik Kimia, walaupun sebenarnya bidang ini merupakan ladang asli lulusan Teknik Perminyakan. Oil & Gas menjadi favorit mayoritas sarjana Teknik Kimia karena dinilai memberikan benefit yang tinggi baik dari segi salary, maupun dari segi training quality. Career development yang cukup baik juga menjadi alasan orang memilih pekerjaan di Oil & Gas. Alasan kekompleksan proses industri dan keunggulan teknologi di Oil & Gas juga menjadi tantangan tersendiri bagi sarjana Teknik Kimia. Perusahaan favorit bagi sarjana Teknik Kimia adalah Exxon Mobil, BP, ConocoPhillips, Total, Chevron, Vico, Shell, Pertamina, Medco, Schlumberger, Halliburton, Baker Hughes, dan masih banyak lagi.
2. FMCG (Fast Moving Consumer Goods)
FMCG menjadi salah satu pekerjaan favorit sarjana Teknik Kimia, karena dinilai dapat memberikan business sense yang tinggi saat menekuni di beberapa posisi pekerjaan FMCG. Benefit dari segi salary yang relatif tinggi juga menjadi alasan masuk ke FMCG, ditambah dengan career path yang baik pula. Skill baru seperti supply chain management, sales & marketing juga menjadi tantangan tersendiri bagi sarjana Teknik Kimia. Teknologi baru yang ditemukan di production division menjadi tantangan tersendiri lainnya. Perusahaan FMCG yang menjadi favorit sarjana Teknik Kimia adalah Nestle, Unilever, P&G, Johnson & Johnson, L’Oreal, KAO, dan masih banyak juga perusahaan FMCG lokal, seperti Orang Tua (OT), dan lain-lain.
3. EPCC (Engineering, Procurement, Construction, and Commissioning)
EPCC dinilai cukup menarik bagi sarjana Teknik Kimia karena bidang pekerjaan ini sangat erat kaitannya dengan bidang studi sarjana Teknik Kimia yaitu perancangan pabrik kimia, atau chemical plant design. Perusahaan EPCC dinilai akan memberikan kesempatan yang besar bagi sarjana Teknik Kimia untuk mengasah ilmu keprofesian Teknik Kimia secara mendalam sehingga ilmu engineeringnya akan semakin menuju expert. Basic EPCC ada di pendidikan sarjana Teknik Kimia kira-kira hampir 80-90% kurikulum, jadi bidang pendidikan S1 Teknik Kimia memang sangat related langsung dengan dunia kerja EPCC atau EPC. Di bidang ini, sarjana Teknik Kimia akan diminta mengurusi PFD, P&ID, analisis NME, sizing peralatan proses pabrik, merancang proses kimia, trouble shooting, dan banyak lagi. Perusahaan favorit pilihan sarjana Teknik Kimia untuk bidang EPCC adalah KBR, Saipem, Technip, Rekayasa Industri, IKPT, Tripatra, Pasadena Engineering, dan masih banyak lagi.
4. Petrokimia
Petrokimia dinilai cukup menarik bagi sarjana Teknik Kimia sebab dunia Petrokimia juga dinilai erat kaitannya dengan studi pendidikan kurikulum sarjana Teknik Kimia. Proses di bidang petrokimia banyak melibatkan proses pencampuran, proses pemisahan, dan proses konversi kimia yang erat kaitannya dengan pendidikan sarjana Teknik Kimia. Bidang petrokimia juga dinilai sangat “Teknik Kimia sekali”, karena ilmu Teknik Kimia sangat terpakai di bidang pekerjaan ini, seperti analisis kolom distilasi, analisis reaktor sintesis, analisis kolom absorber, trouble shooting, pengolahan limbah, dan banyak lagi. Bidang industri pupuk urea dan amonia menjadi favorit pertama bagi sarjana Teknik Kimia. Perusahaan favorit tersebut antara lain adalah Pupuk Sriwidjaja, Petrogres, Pupuk Kaltim, dan KPA.
5. Chemical Industry
Chemical Industry juga dinilai berhubungan langsung dengan pendidikan sarjana Teknik Kimia. Hal tersebut menjadikan bidang ini juga menjadi favorit. Apalagi berhubungan dengan chemical. Perusahaan favorit sarjana Teknik Kimia adalah Nalco, Cognis, Givaudan, Lautan Luas, dan masih banyak lagi.
6. Consultant
Konsultan dinilai dapat mengasah sarjana Teknik Kimia di bidang business sense dan segi management skill. Bidang ini akan sangat mengasah di bidang analtycal thinking, outside the box, dan problem solving. Gaji yang tinggi juga merupakan benefit yang sangat mendukung pekerjaan ini diminati walaupun bidang ini hanya membutuhkan sedikit SDM. Jadi tentunya proses seleksinya juga akan relatif sulit dan peluangnya kecil. Bidang konsultan yang menjadi favorit adalah McKinsey & Company, BCG, Accenture, dan lainnya.
Enam bidang pekerjaan ini masih menjadi top favorite bagi sarjana Teknik Kimia. Ke-favorite-an bidang pekerjaan tertentu bisa muncul dari benefit salary, career development, tantangan pekerjaannya, training system, relationship dengan pendidikan sarjana Teknik Kimia, business development, management development, dan masih banyak lagi tentunya yang tidak dapat disebutkan satu per satu. Bidang pekerjaan yang masih dapat dijelajahi oleh sarjana Teknik Kimia adalah bidang oleochemical, industri renewable energy (bioetanol, biodiesel, gasifikasi biomassa), industri katalis,  agrobisnis, dan berbagai industri speciality chemical , dan masih banyak lagi.  Selain itu pekerjaan seperti dosen / pengajar dan peneliti merupakan bidang pekerjaan yang harus dikembangkan lebih besar agar ke depannya ilmu Teknik Kimia terus lestari dan berkembang pesat seiring dengan perkembangan ilmu dan teknologi zaman. Bidang entrepreneur di berbagai bidang usaha juga merupakan bidang yang sedang dijajaki oleh kaum-kaum muda sekarang-sekarang ini.
Semoga pemaparan ini berguna bagi pilihan dunia kerja kalian sebagai sarjana Teknik Kimia. Silahkan berikan saran & kritik bagi pemaparan ini, serta sharingnya dari kalian sang pembaca.
Sumber Gambar:
http://lpmp-gorontalo.blogspot.com/2011/07/apa-yang-salah-dengan-pendidikan-tinggi.html
Sumber:
http://majarimagazine.com/2011/06/6-pekerjaan-terfavorit-seorang-sarjana-teknik-kimia/

Thursday, February 2, 2012

Mixing

A.  Mild agitation results from superficial fluid velocities of 0.10-0.20 ft/s (0.03-0.06 m/s).  Intense agitation results from velocities of 0.70-1.0 ft/s (0.21-0.30 m/s).
















B.  For baffled tanks, agitation intensity is measured by power input and impeller tip speeds:


Power Requirements Tip Velocity

HP/1000 gal kW/m3 ft/s m/s

Blending 0,2 - 0,5 0,033 - 0,082 -------------------- --------------------

Homogeneous Reaction 0,5 - 1,5 0,082 - 0,247 7,5 - 10,0 2,3 - 3,1

Reaction w/ Heat Transfer 1,5 - 5,0 0,247 - 0,824 10,0 - 15,0 3,1 - 4,6

Liquid-Liquid Mixture 5,0 0,824 15,0 - 20,0 4,6 - 6,1

Liquid-Gas Mixture 5,0 - 10,0 0,824 - 1,647 15,0 - 20,0 4,6 - 6,1

Slurries 10,0 1,647 -------------------- --------------------

















C.  Various geometries of an agitated tank relative to diameter (D) of the vessel include:
Liquid Level = D
Turbine Impeller Diameter = D/3
Impeller Level Above Bottom = D/3
Impeller Blade Width = D/15
Four Vertical Baffle Width = D/10
















D.  For settling velocities around 0.03 ft/s, solids suspension can be accomplished with turbine or propeller impellers.  For settling velocities above 0.15 ft/s, intense propeller agitation is needed.
















E.  Power to mix a fluid of gas and liquid can be 25-50% less than the power to mix the liquid alone.

Heat Exchangers

A.  For the heat exchanger equation, Q = UAF (LMTD), use F = 0.9 when charts for the LMTD correction
factor are not available.







Charts for LMTD correction can be found in Kern or other textbooks.









B.  Most commonly used tubes are 3/4 in. (1.9 cm) in outer diameter on a 1 in triangular spacing at 
     16 ft (4.9 m)long.








C.  A 1 ft (30 cm) shell will contains about 100 ft2 (9.3 m2)




     A 2 ft (60 cm) shell will contain about 400 ft2 (37.2 m2)




     A 3 ft (90 cm) shell will contain about 1100 ft2 (102 m2)




D.  Typical velocities in the tubes should be 3-10 ft/s (1-3 m/s) for liquids and



     30-100 ft/s (9-30 m/s) for gases






E.  Flows that are corrosive, fouling, scaling, or under high pressure are usually placed in the tubes

F.  Viscous and condensing fluids are typically placed on the shell side.



G.  Pressure drops are about 1.5 psi (0.1 bar) for vaporization and 3-10 psi (0.2-0.68 bar) for other services
H.  The minimum approach temperature for shell and tube exchangers is about 20 0F (10 0C) for fluids and
      10 0F (5 0C) for refrigerants.







I.  Cooling tower water is typically available at a maximum temperature of 90 0F (30 0C) and should be 
    returned to the tower no higher than 115 0F (45 0C)





J.  Shell and Tube heat transfer coefficient for estimation purposes can be found in many reference books
     or an online list can be found at one of the two following addresses:




http://www.cheresources.com/uexchangers.shtml





http://www.processassociates.com/process/heat/uvalues1.htm



K.  Double pipe heat exchangers may be a good choice for areas from 100 to 200 ft2 (9.3-18.6 m2)

L.  Spiral heat exchangers are often used to slurry interchangers and other services containing solids
M.  Plate heat exchanger with gaskets can be used up to 320 0F (160 0C) and are often used for interchanging
      duties due to their high efficiencies and ability to "cross" temperatures.  More about compact heat exchangers
      can be found at:









http://www.us.thermal.alfalaval.com/